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Abstract: - A numerical model that solves two-phase flow motion equations to reproduce turbidity currents that 

occur in reservoirs, is proposed. Three formalizations of the two-phase flow motion equations are presented: 

the first one can be adopted for high concentration values; the second one is valid under the hypothesis of 

diluted concentrations; the third one is based on the assumption that the particles are in translational 

equilibrium with the fluid flow. The proposed numerical model solves the latter formalization of two-phase 

flow motion equations, in order to simulate turbidity currents. The motion equations are presented in an integral 

form in time-dependent curvilinear coordinates, with the vertical coordinate that varies in order to follow the 

free surface movements. The proposed numerical model is validated against experimental data and is applied to 

a practical engineering case study of a reservoir, in order to evaluate the possibility of the formation of turbidity 

currents. 
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1 Introduction 
The motion equations of a two-phase flow with a 

mutual interaction between the phases are 

commonly used to represent many engineering 

problems. In this context, Siddiqui et al. [1] used the 

semi-analytic Homotopy Analysis Method to solve 

the two-phase flow motion equations for a Couette-

Poiseuille flow. In Mitkova et al. [2], the layer 

thickness variation in two-phase flow of a third-

grade fluid, is investigated. Abood et al. [3-4] 

carried out a numerical-experimental study of air-oil 

[3] and water-oil [4] two-phase flows, for the 

simulation of the stream patterns in vertical and 

horizontal pipes. Abdulwahid et al. [5] made a 

numerical investigation on two-phase air-water 

flows in pipes with VOF homogeneous model 

through unsteady state turbulent flow employed to 

study the effect of holdup, void fraction and liquid 

film thickness on the pressure drop through pipes.  

Gravity currents consist in a two-phase flow that 

is driven by the density difference between the 

phases. These phenomena have been investigated 

extensively in the past years, numerically, 

experimentally and analytically. Ungarish [6] 

presented an analytical analysis of a steady-state 

gravity current that propagates into an ambient of 

motionless fluid in an open channel of general non-

rectangular cross-section at high Reynolds number. 

Longo et al. [7] carried out a theoretical and 

experimental study of non-Boussinesq inertial (high 

Reynolds number flows) gravity currents flowing in 

rectangular cross-sections, produced by lock-

release. Hogg et al. [8] investigated theoretically on 

gravitationally driven motion arising from a 

sustained constant source of dense fluid in a 

horizontal channel, using shallow-layer models and 

direct numerical simulations of the Navier-Stokes 

equations. Salinas et al. [9] used a 3D DNS model to 

investigate on the flow of a gravity current of a 

dense fluid, released from rest from a rectangular 

lock, into an ambient fluid with a density lower than 

the one of the dense fluid. See [10] for a detailed 

review about gravity currents. 

Turbidity currents can be considered as particular 

gravity currents, in which solid particles represent 

one of the phases. In recent years, Espath et al. [11] 

and Cantero et al. [12] carried out numerical studies 

on turbidity currents, based on direct numerical 

simulations. Turbidity currents in reservoirs (which 

are created by artificial barrages on water courses), 

that can occur when the flow has the capacity to 

transport large quantities of solid materials, can be 

represented as a free-surface two-phase flow (with a 

fluid phase representing the water and a solid phase 

representing the solid particles). In the 

representation of the aforementioned phenomenon, a 

two-way coupling between fluid and solid phases, 

must be used.  
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In the context of the numerical simulation of 

free-surface flows, many models solve the depth-

averaged motion equations, as Nonlinear Shallow 

Water Equations [13] or Boussinesq Equations [14-

15], and the depth-averaged concentration equation. 

In these models, the velocity and the concentration 

fields are averaged over the water depth. In order to 

have a proper representation of a two-way coupled 

two-phase flow, is important to have a prediction of 

the vertical distribution of the flow variables.  

In order to take into account the three-

dimensional aspects of the fluid flows, many recent 

models numerically solve the three-dimensional 

motion equations [16-18]. In the context of three-

dimensional models for free surface flows, the 

correct assignment of pressure and kinematic 

boundary condition at the free-surface is one of the 

most challenging issues. A recent class of models 

[19-20] solves this issue by using the so-called σ-

coordinates transformation. By doing so, the zero-

pressure and kinematic boundary conditions at the 

free surface can be assigned precisely. 

In the formalization of the two-phase flow 

equations, some hypotheses can be adopted to 

simplify the representation of the physical 

phenomena: a) there is a thermal and dynamic 

equilibrium between the phases; b) the solid phase 

can be considered as a homogeneous fluid, so that 

the mass and momentum conservation principles are 

valid for it; c) the solid particles are spherical in 

shape. Under these hypotheses, mass and 

momentum conservation equations can be defined 

for each phase (solid and fluid). There is a two-way 

coupling between the set of equations of the fluid 

phase and the set of equations of the solid phase, 

due to the terms that arise in both sets of the 

equations. These terms are: the forces resulting from 

the interaction between the two phases and the 

volume fraction of the solid phase (the ratio between 

the macroscopic density of the solid phase and the 

microscopic density of the single particle). In this 

work, three formulations are presented, which 

introduce subsequent simplifications. The most 

general formalization is valid for high solid phase 

concentrations. In this formalization, the fluid flow 

is not isochoric, because in the continuity equation 

of the fluid phase, the presence of the volume 

fraction of the solid phase term does not allow the 

fluid velocity vector field to be divergence free. 

The second formalization introduces the 

hypothesis of diluted concentration. The volume 

fraction of the solid phase can therefore be 

neglected in the continuity equation and in all the 

terms of the momentum balance equation of the 

fluid phase, except from the body force term; the 

two-way coupling between the phases is guaranteed 

by the presence of the volume fraction of the solid 

phase in the body force term of the momentum 

balance equation of the fluid phase. Furthermore, 

being the suspension diluted, the solid particles are 

sufficiently far one from each other, to let us assume 

that the interaction stresses between the solid 

particles are negligible. In the formalization of the 

two-phase flow motion equations for a diluted 

suspension, the two sets of equations are still two-

way coupled (through the interaction force between 

the two phases and the volume fraction of the solid 

phase), but the fluid flow is isochoric.  

In the third formalization of the motion 

equations, the so-called linearization hypothesis is 

introduced: when the ratio between the particle 

translational relaxation time and the characteristic 

time of the fluid flow (i.e. the Stokes number 𝑆𝑘) is 

sufficiently low (𝑆𝑘 < 10−1), it is possible to make 

the assumption that the particles are in translational 

equilibrium with the fluid flow. Under this 

hypothesis, the horizontal velocity components of 

the solid phase are equal to the horizontal velocity 

components of the fluid phase, while the vertical 

velocity component of the solid phase is equal to the 

sum of the vertical velocity component of the fluid 

phase and the particle settling velocity. The 

momentum equation of the solid phase and the 

momentum equation of the liquid phase can be 

combined, in order to obtain a single momentum 

equation. The other two equations that are present in 

this formalization are the mass conservation 

equation for the fluid phase, and the particle 

concentration equation, derived from the mass 

conservation equation for the solid phase. 

Formulations of motion equations that introduce the 

linearization hypothesis are extensively used in the 

context of numerical simulation of turbidity currents 

(see for example [11] and [12]). 

In this work, the aforementioned three different 

formalizations of the two-phase flow motion 

equations, are expressed in integral form, in terms of 

Cartesian based variables, on a time-dependent 

domain. A numerical model for the simulation of 

the turbidity currents, that solves the two-phase flow 

three-dimensional motion equations in integral form 

under the linearization hypothesis, is proposed. The 

motion equations, expressed in terms of Cartesian 

based variables, are transformed in a time-varying 
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coordinate system and are numerically integrated on 

a time-varying boundary conforming grid. 

Following the procedure shown in [17], the 

aforementioned equations are solved on a coordinate 

system in which the vertical coordinate varies in 

time in order to follow the free-surface movement. 

The solution advances in time by using a Strong 

Stability Preserving Runge-Kutta (SSPRK) 

fractional step method; at each stage, a divergence-

free velocity field is obtained by applying a pressure 

correction formulation. 

The proposed model is validated against 

experimental data presented by [21]. Furthermore, 

the proposed model is applied to a practical 

engineering case study of a reservoir. In fact, during 

floodings, large quantities of solid material are 

transported into reservoirs and then are blocked by 

the artificial barrages. A strategy to solve this issue 

consists in the opening of the bottom outlets of the 

dam during floodings, which can lead to the 

formation of turbidity currents that are able to 

transport downstream the solid material. The aim of 

this investigation is to verify if the opening the 

bottom outlet of the dam causes the formation a 

turbidity current, that is able discharge downstream 

the solid material which reaches the reservoir during 

a flooding, in order to control the silting processes 

in the reservoir. 

The paper is structured as follows: in Section 2, 

we present the different formulation of the two-

phase flow motion equations and the numerical 

model; in Section 3, we show the results of a 

validation of the proposed model against several 

experimental tests and we present a practical 

engineering case study of a reservoir; in Section 4, 

we present the conclusion of our work. 

 

 

2 Equations and model 
2.1 Governing Equations 
The motion equations of a two-phase flow with 

mutual interaction between phases can be used to 

simulate turbidity current. In order to simplify the 

representation of the physical phenomenon, three 

hypotheses can be adopted: 

1. thermal and dynamic equilibrium 

between phases; 

2. solid phase as an homogeneous fluid, so 

that the mass and momentum 

conservation principles are valid for it; 

3. spherical solid particles with diameter 𝑑. 

Let �̆�𝑆 be the microscopic density of the single 

solid particle and 𝜌𝑆 be the macroscopic density of 

the solid phase; 𝑎 = 𝜌𝑆 �̆�𝑆⁄  is the volume fraction of 

the solid phase. Let 𝜌 be the microscopic density of 

the fluid phase. 

Let us consider a control volume 𝛥𝑉(𝑡), with 

surface 𝛥𝐴(𝑡), which moves with a velocity �⃗� 

different from the fluid velocity �⃗⃗�. In a Cartesian 

system of reference (𝑥1, 𝑥2, 𝑥3), �⃗⃗� and �⃗� 

components are respectively (𝑢1, 𝑢2, 𝑢3) and 

(𝑣1, 𝑣2, 𝑣3). The integral form of the mass 

conservation equation of the fluid phase over the 

control volume 𝛥𝑉(𝑡) is: 

 

𝜌
𝑑

𝑑𝑡
∫ (1 − 𝑎) 𝑑𝑉

𝛥𝑉(𝑡)

 

+𝜌 ∫ (1 − 𝑎)(�⃗⃗� − �⃗�) ∙ �̂� 𝑑𝐴
𝛥𝐴(𝑡)

= 0 
(1) 

 

where �̂� is the unit outward normal vector. The 

integral form of the momentum equation of the fluid 

phase over the control volume 𝛥𝑉(𝑡) is: 

 

𝜌
𝑑

𝑑𝑡
∫ (1 − 𝑎)�⃗⃗� 𝑑𝑉

𝛥𝑉(𝑡)

 

+𝜌 ∫ (1 − 𝑎)[�⃗⃗�⨂(�⃗⃗� − �⃗�)] ∙ �̂� 𝑑𝐴
𝛥𝐴(𝑡)

 

= 𝜌
𝑑

𝑑𝑡
∫ (1 − 𝑎)𝑓𝑑𝑉

𝛥𝑉(𝑡)

+ ∫ 𝐓 ∙ �̂� 𝑑𝐴
𝛥𝐴(𝑡)

− ∫ �⃗�𝑃 𝑑𝑉
𝛥𝑉(𝑡)

 
(2) 

 

where the symbol ⨂ represents the outer product, 𝑓 

is the external body force vector per unit mass, 𝐓 is 

the viscous stress tensor and �⃗�𝑃 is the force per unit 

volume resulting from the interaction between the 

two phases, which is given by: 

 

�⃗�𝑃 = 𝑎
18𝜇

𝑑2
(�⃗⃗� − �⃗⃗�𝑆) − 𝑎𝛻𝑝 

(3) 

 

where 𝜇 and 𝑝 are the dynamic viscosity and the 

pressure of the fluid phase, respectively, and �⃗⃗�𝑆 is 

the velocity vector of the solid phase. The first term 

of eqn. (3) is the viscous resistance force according 

to Stokes law, while the second term is due to the 

pressure gradient, in the fluid surrounding the 

particle, caused by the acceleration of the fluid.  
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The integral form of the mass conservation 

equation of the solid phase over the control volume 

𝛥𝑉(𝑡) is: 

 

�̆�𝑆

𝑑

𝑑𝑡
∫ 𝑎 𝑑𝑉

𝛥𝑉(𝑡)

 

+�̆�𝑆 ∫ 𝑎(�⃗⃗�𝑆 − �⃗�) ∙ �̂� 𝑑𝐴
𝛥𝐴(𝑡)

= 0 
(4) 

 

The integral form of the momentum equation of 

the solid phase over the control volume 𝛥𝑉(𝑡) is: 

 

�̆�𝑆

𝑑

𝑑𝑡
∫ 𝑎�⃗⃗�𝑆 𝑑𝑉

𝛥𝑉(𝑡)

 

+�̆�𝑆 ∫ 𝑎[�⃗⃗�𝑆⨂(�⃗⃗�𝑆 − �⃗�)] ∙ �̂� 𝑑𝐴
𝛥𝐴(𝑡)

 

= �̆�𝑆

𝑑

𝑑𝑡
∫ 𝑎𝑓𝑑𝑉

𝛥𝑉(𝑡)

+ ∫ 𝐓𝑆 ∙ �̂� 𝑑𝐴
𝛥𝐴(𝑡)

 

+ ∫ �⃗�𝑃 𝑑𝑉
𝛥𝑉(𝑡)

 
(5) 

 

where 𝐓𝑆 is the solid phase stress tensor that takes 

into account the effects of the interactions between 

two or more solid particles. 

Let (𝜉1, 𝜉2, 𝜉3) be a system of curvilinear 

coordinates, the transformation from Cartesian 

coordinates (𝑥1, 𝑥2, 𝑥3) to the generalized 

curvilinear coordinates (𝜉1, 𝜉2, 𝜉3) is: 

 

𝜉1 = 𝜉1(𝑥1, 𝑥2, 𝑥3) 

𝜉2 = 𝜉2(𝑥1, 𝑥2, 𝑥3) 

𝜉3 = 𝜉3(𝑥1, 𝑥2, 𝑥3) (6) 

 

Let 𝑐(𝑙) = 𝜕�⃗�/𝜕𝜉𝑙 be the covariant base vectors 

and 𝑐(𝑙) = 𝜕𝜉𝑙/𝜕�⃗� the contravariant base vectors. 

The metric tensor and its inverse are defined by 

𝑐𝑙𝑚 = 𝑐(𝑙) ∙ 𝑐(𝑚) and 𝑐𝑙𝑚 = 𝑐(𝑙) ∙ 𝑐(𝑚), with 

(𝑙, 𝑚 = 1,2,3). The Jacobian of the transformation 

is given by [22-23]: 

 

√𝑐 = √𝑑𝑒𝑡(𝑐𝑙𝑚) (7) 

 

𝛥𝑉(𝑡) is considered as a volume element defined 

by surface elements bounded by curves lying on the 

coordinate lines. We define the volume element in 

the physical space as 𝛥𝑉(𝑡) = √𝑐𝛥𝜉1𝛥𝜉2𝛥𝜉3 and 

the volume element in the transformed space as 

𝛥𝑉∗ = 𝛥𝜉1𝛥𝜉2𝛥𝜉3. It is possible to see that 𝛥𝑉(𝑡) is 

time dependent, while 𝛥𝑉∗ is not. Analogously, the 

surface element in the physical space as 𝛥𝐴𝛼𝛽(𝑡) is 

time-dependent, while the surface element in the 

transformed space 𝛥𝐴𝛼𝛽
∗  is not.  

In a generalized curvilinear coordinate system, 

eqns. (1) and (2) become, respectively: 

 

𝜌
𝑑

𝑑𝑡
∫ (1 − 𝑎)√𝑐 𝑑𝜉1𝑑𝜉2𝑑𝜉3

𝛥𝑉∗
= 

−𝜌 ∑ [∫ (1 − 𝑎)(�⃗⃗� − �⃗�)
𝛥𝐴𝛽𝛾

∗+

3

𝛼=1

∙ 𝑐(𝛼)√𝑐 𝑑𝜉𝛽𝑑𝜉𝛾 

− ∫ (1 − 𝑎)(�⃗⃗� − �⃗�) ∙ 𝑐(𝛼)√𝑔 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗−
] 

(8) 

 

𝜌
𝑑

𝑑𝑡
∫ (1 − 𝑎)�⃗⃗�√𝑐 𝑑𝜉1𝑑𝜉2𝑑𝜉3

𝛥𝑉∗
= 

−𝜌 ∑ {∫ (1 − 𝑎)[�⃗⃗�⨂(�⃗⃗� − �⃗�)]
𝛥𝐴𝛽𝛾

∗+

3

𝛼=1

∙ 𝑐(𝛼)√𝑐 𝑑𝜉𝛽𝑑𝜉𝛾 

− ∫ (1 − 𝑎)[�⃗⃗�⨂(�⃗⃗� − �⃗�)]
𝛥𝐴𝛽𝛾

∗−

∙ 𝑐(𝛼)√𝑐 𝑑𝜉𝛽𝑑𝜉𝛾} 

+ ∑ [∫ 𝑻 ∙ 𝑐(𝛼)√𝑐 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗+

3

𝛼=1

− ∫ 𝑻 ∙ 𝑐(𝛼)√𝑐 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗−
] 

+𝜌 ∫ (1 − 𝑎)𝑓√𝑐 𝑑𝜉1𝑑𝜉2𝑑𝜉3
𝛥𝑉∗

− ∫ �⃗�𝑃√𝑐 𝑑𝜉1𝑑𝜉2𝑑𝜉3
𝛥𝑉∗

 
(9) 

 

In eqns. (8), (9) and hereinafter, 𝛥𝐴𝛽𝛾
∗+ and 𝛥𝐴𝛽𝛾

∗−  

are the contour surfaces of the volume 𝛥𝑉∗ on 

which 𝜉α is constant and which are located at the 

larger and the smaller value of 𝜉α, respectively (the 

coefficients 𝛼, 𝛽, γ = 1,2,3 are cyclic). In a 

generalized curvilinear coordinate system, eqns. (4) 

and (5) become, respectively: 

 

 

�̆�𝑆

𝑑

𝑑𝑡
∫ 𝑎√𝑐 𝑑𝜉1𝑑𝜉2𝑑𝜉3

𝛥𝑉∗
= 

−�̆�𝑆 ∑ [∫ 𝑎(�⃗⃗�𝑆 − �⃗�) ∙ 𝑐(𝛼)√𝑐 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗+

3

𝛼=1
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− ∫ 𝑎(�⃗⃗�𝑆 − �⃗�) ∙ 𝑐(𝛼)√𝑐 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗−
] 

(10) 

 

�̆�𝑆

𝑑

𝑑𝑡
∫ 𝑎�⃗⃗�𝑆√𝑐 𝑑𝜉1𝑑𝜉2𝑑𝜉3

𝛥𝑉∗
= 

−�̆�𝑆 ∑ {∫ 𝑎[�⃗⃗�𝑆⨂(�⃗⃗�𝑆 − �⃗�)]
𝛥𝐴𝛽𝛾

∗+

3

𝛼=1

∙ 𝑐(𝛼)√𝑐 𝑑𝜉𝛽𝑑𝜉𝛾 

− ∫ 𝑎[�⃗⃗�𝑆⨂(�⃗⃗�𝑆 − �⃗�)] ∙ 𝑐(𝛼)√𝑐 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗−
} 

+ ∑ [∫ 𝐓𝑆 ∙ 𝑐(𝛼)√𝑐 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗+

3

𝛼=1

− ∫ 𝐓𝑆 ∙ 𝑐(𝛼)√𝑐 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗−
] 

+�̆�𝑆 ∫ 𝑎𝑓√𝑐 𝑑𝜉1𝑑𝜉2𝑑𝜉3
𝛥𝑉∗

+ ∫ �⃗�𝑃√𝑐 𝑑𝜉1𝑑𝜉2𝑑𝜉3
𝛥𝑉∗

 
(11) 

 

Eqns. (8), (9), (10) and (11) represent the general 

formalization of the two-phase flow equations in 

integral form. In eqn. (8), the presence of the 

volume fraction term 𝑎 does not allow the fluid 

velocity vector field to be divergence free. 

If the suspension is sufficiently diluted, it is 

possible to obtain a simplified formulation for the 

two-phase flow equations. The solid phase stress 

tensor 𝐓𝑆 components are inversely proportional to 

the ratio of the distance between particles to their 

diameter; therefore, 𝐓𝑆 can be neglected for diluted 

suspensions. Furthermore, the volume fraction 𝑎 can 

be neglected in the continuity equation and in all the 

terms of the momentum balance equation of the 

fluid phase, except from the body force term. With 

these assumptions, eqns. (8), (9), (10) and (11) 

become, respectively: 

 

𝜌
𝑑

𝑑𝑡
∫ √𝑐 𝑑𝜉1𝑑𝜉2𝑑𝜉3

𝛥𝑉∗
= 

−𝜌 ∑ [∫ (�⃗⃗� − �⃗�) ∙ 𝑐(𝛼)√𝑐 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗+

3

𝛼=1

 

− ∫ (�⃗⃗� − �⃗�) ∙ 𝑐(𝛼)√𝑐 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗−
] 

(12) 

 

𝜌
𝑑

𝑑𝑡
∫ �⃗⃗�√𝑐 𝑑𝜉1𝑑𝜉2𝑑𝜉3𝛥𝑉∗ = 

−𝜌 ∑ {∫ [�⃗⃗�⨂(�⃗⃗� − �⃗�)] ∙ 𝑐(𝛼)√𝑐 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗+

3

𝛼=1

 

− ∫ [�⃗⃗�⨂(�⃗⃗� − �⃗�)] ∙ 𝑐(𝛼)√𝑐 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗−
} 

+ ∑ [∫ 𝐓 ∙ 𝑐(𝛼)√𝑐 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗+

3

𝛼=1

− ∫ 𝐓 ∙ 𝑐(𝛼)√𝑐 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗−
] 

+𝜌 ∫ (1 − 𝑎)𝑓√𝑐 𝑑𝜉1𝑑𝜉2𝑑𝜉3
𝛥𝑉∗

− ∫ �⃗�𝑃√𝑐 𝑑𝜉1𝑑𝜉2𝑑𝜉3
𝛥𝑉∗

 
(13) 

 

�̆�𝑆

𝑑

𝑑𝑡
∫ 𝑎√𝑐 𝑑𝜉1𝑑𝜉2𝑑𝜉3

𝛥𝑉∗
= 

−�̆�𝑆 ∑ [∫ 𝑎(�⃗⃗�𝑆 − �⃗�) ∙ 𝑐(𝛼)√𝑐 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗+

3

𝛼=1

 

− ∫ 𝑎(�⃗⃗�𝑆 − �⃗�) ∙ 𝑐(𝛼)√𝑐 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗−
] 

(14) 

 

�̆�𝑆

𝑑

𝑑𝑡
∫ 𝑎�⃗⃗�𝑆√𝑐 𝑑𝜉1𝑑𝜉2𝑑𝜉3

𝛥𝑉∗
= 

−�̆�𝑆 ∑ {∫ 𝑎[�⃗⃗�𝑆⨂(�⃗⃗�𝑆 − �⃗�)]
𝛥𝐴𝛽𝛾

∗+

3

𝛼=1

∙ 𝑐(𝛼)√𝑐 𝑑𝜉𝛽𝑑𝜉𝛾 

− ∫ 𝑎[�⃗⃗�𝑆⨂(�⃗⃗�𝑆 − �⃗�)] ∙ 𝑐(𝛼)√𝑐 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗−
} 

+�̆�𝑆 ∫ 𝑎𝑓√𝑐 𝑑𝜉1𝑑𝜉2𝑑𝜉3
𝛥𝑉∗

+ ∫ �⃗�𝑃√𝑐 𝑑𝜉1𝑑𝜉2𝑑𝜉3
𝛥𝑉∗

 
(15) 

 

Eqns. (12), (13), (14) and (15) represent the 

formalization of the two-phase flow motion 

equations in integral form for a diluted suspension. 

Is to be noted that fluid flow is assumed to be 

isochoric, as in eqn. (12) the volume fraction 𝑎 is 

neglected. 

Let us introduce the loading ratio of the flow and 

the Stokes number, that are respectively: 

 

𝛽 =
�̆�𝑆

𝜌
 

(16) 
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𝑆𝑘 =
𝜏𝑝

𝜏𝑓
 

(17) 

 

𝜏𝑝 is the particle translational relaxation time and 𝜏𝑓 

is the characteristic time of the fluid flow. The 

translational relaxation time can be expressed as: 

 

𝜏𝑝 =
�̆�𝑆𝑑2

18𝜇𝑓𝑑
 

(18) 

 

where 𝑓𝑑 is the drag coefficient: 

 

𝑓𝑑 = 1 +
1

6
(𝑅𝑝)

2
3⁄
 

(19) 

 

with the particle Reynolds number 𝑅𝑝 equal to: 

 

𝑅𝑝 =
𝜌𝑑|�⃗⃗� − �⃗⃗�𝑆|

𝜇
 

(20) 

 

The characteristic time of the fluid flow can be 

expressed as  

 

𝜏𝑓 =
𝐿

𝑈
 

(21) 

 

where 𝐿 and 𝑈 are the flow field characteristic 

length and the flow characteristic velocity, 

respectively. The Stokes number indicates how 

rapidly the particle is able to follow the variations in 

the fluid velocity and it is proportional to the 

translational non-equilibrium of the particles. Small 

values of 𝑆𝑘 means a small difference between the 

particle and the fluid velocity, and large coupling 

effect. The value of the Stokes number indicates 

whether it is possible to consider the particles in 

equilibrium with the fluid flow: if 𝑆𝑘 < 10−1, the 

hypothesis of particles in equilibrium with the fluid 

flow can be assumed, so the particle velocity field 

can be assumed as a superimposition of the fluid 

velocity field and the particle settling velocity field; 

if 𝑆𝑘 > 10−1, the nonequilibrium effects are not 

negligible. 

The loading ratio 𝛽 is related to the coupling 

effect. For small values of 𝛽, the fluid phase is not 

dependent to the solid phase, resulting in a one-way 

coupling between the set of equations of the fluid 

phase and the set of equations of the solid phase. 

Large values of 𝛽 lead to a two-way coupling 

between the two sets of equations, which have to be 

solved simultaneously. 

In the case of turbidity currents, the values of 𝑆𝑘 

are small, so the the particles can be considered in 

equilibrium with the fluid phase. Thus, the 

linearization hypothesis can be introduced: the solid 

phase velocity field is obtained by superimposing 

the fluid flow velocity field and the solid particle 

settling velocity field. On the other hand, turbidity 

currents have large values of 𝛽, so the effects of the 

solid particles on the fluid flow cannot be neglected. 

Let be 𝐻(𝑥1, 𝑥2, 𝑡) = ℎ(𝑥1, 𝑥2) + 𝜂(𝑥1, 𝑥2, 𝑡), 

where ℎ is the still water depth. Let us assume that 

in the Cartesian system of reference, 𝑥3 = 0 at the 

still free surface elevation (see Fig. 1). In order to 

represent the bottom and surface geometry and to 

correctly assign the pressure and kinematics 

conditions at the bottom and at the free surface, a 

particular transformation from Cartesian to 

curvilinear coordinates, in which coordinates vary in 

time in order to follow the free surface movements, 

is introduced: 

 

𝜉1 = 𝑥1     𝜉2 = 𝑥2       𝜉3 =
 𝑥3 + ℎ

𝐻
 

(22) 

 

Under the transformation (22) the components of 

vector �⃗�, are: 

 

𝑣1 = 0       𝑣2 = 0       𝑣3 =
𝜕𝑥3

𝜕𝑡
 

(23) 

 

This coordinate transformation basically maps the 

time-varying coordinates of the physical domain 

into a fixed coordinate system (𝜉1, 𝜉2, 𝜉3) where 𝜉3 

spans from 0 to 1. In addition, the Jacobian of the 

transformation becomes 

 

√𝑐 = 𝐻 (24) 

 

 
Fig. 1. Definition of the geometric variables. 
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We define the cell averaged value (in the 

transformed space), of the variables 𝐻, 𝐻�⃗⃗� and 𝐻𝑎, 

respectively (recalling that 𝐻 does not depend on 

𝜉3): 

 

�̅� =
1

𝛥𝐴12
∗ ∫ 𝐻 𝑑𝜉1𝑑𝜉2

𝛥𝐴12
∗

 
(25) 

 

𝐻�⃗⃗�̅̅ ̅̅ =
1

𝛥𝑉∗
∫ 𝐻�⃗⃗� 𝑑𝜉1𝑑𝜉2𝑑𝜉3

𝛥𝑉∗
 

(26) 

 

𝐻𝑎̅̅ ̅̅ =
1

𝛥𝑉∗
∫ 𝐻𝑎 𝑑𝜉1𝑑𝜉2𝑑𝜉3

𝛥𝑉∗
 

(27) 

 

In order to take into account the effects of 

turbulence, let us split the flow velocity �⃗⃗�, the 

pressure 𝑝 and the volume fraction of the solid 

phase 𝑎, into a Reynolds-averaged part and a 

fluctuating part, where the brackets 〈 〉 indicate a 

Reynolds-average operation and the superscript ′ 
indicates the residual fluctuating part:  

 

�⃗⃗� = 〈�⃗⃗�〉 + �⃗⃗�′      𝑝 = 〈𝑝〉 + 𝑝′      𝑎 = 〈𝑎〉 + 𝑎′ 
(28) 

 

By means of transformation (22), by dividing by 

𝜌, eqn. (12) can be rewritten as 

 

𝜕�̅�

𝜕𝑡
= 

−
1

𝛥𝐴12
∗ ∫ ∑ [∫ 𝐻(〈�⃗⃗�〉 − �⃗�) ∙ 𝑐(𝛼) 𝑑𝜉𝛽

𝜉𝛼
∗+

2

𝛼=1

1

0

 

− ∫ 𝐻(〈�⃗⃗�〉 − �⃗�) ∙ 𝑐(𝛼) 𝑑𝜉𝛽
𝜉𝛼

∗−
] 

(29) 

 

where 𝜉𝛼
∗+ and 𝜉𝛼

∗− are the contour lines of the 

surface 𝛥𝐴12
∗  on which 𝜉𝛼 is constant and which are 

located at the larger and the smaller value of 𝜉α, 

respectively (the coefficients 𝛼, 𝛽 = 1,2 are cyclic). 

In a Cartesian coordinate system, the particle 

settling velocity �⃗⃗⃗� is given by: 

 

𝑤1 = 0       𝑤2 = 0       𝑤3 =  𝑤𝑠𝑒𝑑 
(30) 

 

in which 𝑤𝑠𝑒𝑑 is the sediment fall velocity. With the 

linearization hypothesis, the solid particle velocity is 

obtained by the superimposition of the fluid velocity 

field and the particle settling velocity field. 

By using of transformation (22), by combining 

eqns. (13) and (15), we can write the momentum 

equation under the linearization hypothesis: 

 

𝜌
𝜕𝐻〈�⃗⃗�〉̅̅ ̅̅ ̅̅

𝜕𝑡
= 

−𝜌
1

𝛥𝑉∗
∑ {∫ 𝐻[〈�⃗⃗�〉⨂(〈�⃗⃗�〉 − �⃗�)]

𝛥𝐴𝛽𝛾
∗+

3

𝛼=1

∙ 𝑐(𝛼) 𝑑𝜉𝛽𝑑𝜉𝛾 

−𝜌 ∫ 𝐻[〈�⃗⃗�〉⨂(〈�⃗⃗�〉 − �⃗�)] ∙ 𝑐(𝛼) 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗−
} 

+
1

𝛥𝑉∗
∑ [∫ 𝐓 ∙ 𝑐(𝛼) 𝐻 𝑑𝜉𝛽𝑑𝜉𝛾

𝛥𝐴𝛽𝛾
∗+

3

𝛼=1

− ∫ 𝐓 ∙ 𝑐(𝛼) 𝐻 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗−
] 

+
1

𝛥𝑉∗
∑ [∫ 𝐓𝑅 ∙ 𝑐(𝛼) 𝐻 𝑑𝜉𝛽𝑑𝜉𝛾

𝛥𝐴𝛽𝛾
∗+

3

𝛼=1

− ∫ 𝐓𝑅 ∙ 𝑐(𝛼) 𝐻 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗−
] 

+𝜌
1

𝛥𝑉∗
∫ [1 + 𝑅〈𝑎〉]𝑓𝐻 𝑑𝜉1𝑑𝜉2𝑑𝜉3

𝛥𝑉∗
 

(31) 

 

where 𝑅 = �̆�𝑆 𝜌⁄ − 1 and 𝐓𝑅 = −𝜌〈�⃗⃗�′⨂�⃗⃗�′〉 is the 

turbulent stress tensor. The constitutive relation for 

the viscous stress tensor is 𝐓 = −〈𝑝〉𝐈 + 2𝜇〈𝐒〉, 
where 𝐈 is the identity tensor, 𝜇 is the dynamic 

viscosity and 〈𝐒〉 is the rate-of-strain tensor. 𝜈 =
𝜇 𝜌⁄  is the kinematic viscosity. Eqn. (31) can be 

rewritten as (dividing by 𝜌): 
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𝜕𝐻〈�⃗⃗�〉̅̅ ̅̅ ̅̅

𝜕𝑡
= 

−
1

𝛥𝑉∗
∑ {∫ 𝐻[〈�⃗⃗�〉⨂(〈�⃗⃗�〉 − �⃗�)]

𝛥𝐴𝛽𝛾
∗+

3

𝛼=1

∙ 𝑐(𝛼) 𝑑𝜉𝛽𝑑𝜉𝛾 

− ∫ 𝐻[〈�⃗⃗�〉⨂(〈�⃗⃗�〉 − �⃗�)] ∙ 𝑐(𝛼) 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗−
} 

−
1

𝜌

1

𝛥𝑉∗
∫

𝜕〈𝑝〉

𝜕𝜉𝑘
𝑐(𝑘)𝐻 𝑑𝜉1𝑑𝜉2𝑑𝜉3

𝛥𝑉∗
 

+2𝜈
1

𝛥𝑉∗
∑ [∫ 〈𝐒〉 ∙ 𝑐(𝛼)𝐻 𝑑𝜉𝛽𝑑𝜉𝛾

𝛥𝐴𝛽𝛾
∗+

3

𝛼=1

− ∫ 〈𝐒〉 ∙ 𝑐(𝛼)𝐻 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗−
] 

+
1

𝜌

1

𝛥𝑉∗
∑ [∫ 𝐓𝑅 ∙ 𝑐(𝛼)𝐻 𝑑𝜉𝛽𝑑𝜉𝛾

𝛥𝐴𝛽𝛾
∗+

3

𝛼=1

− ∫ 𝐓𝑅 ∙ 𝑐(𝛼)𝐻 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗−
] 

+
1

𝛥𝑉∗
∫ [1 + 𝑅〈𝑎〉]𝑓𝐻 𝑑𝜉1𝑑𝜉2𝑑𝜉3

𝛥𝑉∗
 

(32) 

 

By applying the linearization hypothesis to eqn. 

(15), by using transformation (22) and by dividing 

by 𝜌, we can write the particle concentration 

equation: 

 

𝜕𝐻〈𝑎〉̅̅ ̅̅ ̅̅

𝜕𝑡
= 

−
1

𝛥𝑉∗
∑ {∫ 〈𝑎〉𝐻[(〈�⃗⃗�〉 − �⃗�) − �⃗⃗⃗�]

𝛥𝐴𝛽𝛾
∗+

3

𝛼=1

∙ 𝑐(𝛼) 𝑑𝜉𝛽𝑑𝜉𝛾 

− ∫ 〈𝑎〉𝐻[(〈�⃗⃗�〉 − �⃗�) − �⃗⃗⃗�] ∙ 𝑐(𝛼) 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗+
} 

+
1

𝛥𝑉∗
∑ [∫ 𝐻〈�⃗⃗�′𝑎′〉 ∙ 𝑐(𝛼) 𝑑𝜉𝛽𝑑𝜉𝛾

𝛥𝐴𝛽𝛾
∗+

3

𝛼=1

 

− ∫ 𝐻〈�⃗⃗�′𝑎′〉 ∙ 𝑐(𝛼) 𝑑𝜉𝛽𝑑𝜉𝛾
𝛥𝐴𝛽𝛾

∗−
] 

(33) 

 

Eqns. (29), (32) and (33) represent the 

formalization of the three-dimensional two-phase 

flow motion equations under the linearization 

hypothesis, expressed in integral form in terms of 

Cartesian based variables, on a time-dependent 

curvilinear coordinate system. 

2.2 Numerical model 
In this work, eqns. (29), (32) and (33), are 

numerically solved by adopting the following 

procedure: 

• MUSCL-TVD reconstructions to obtain 

point-values variables at cell interfaces. 

• Advancing in time of the unknown 

variables at the centre of the cell faces by 

means of an HLL Riemann solver. 

• Advancing in time of the cell-averaged 

predictor velocity field. 

• Solution of the Poisson pressure 

equation by using a four-color Zebra line 

Gauss-Seidel alternate method and a 

multigrid V-cycle. 

• Correction of the predictor velocity field 

by using a scalar potential 𝛹. 

• Advancing in time of the total local 

depth by means of eqn. (29), and of the 

volume fraction of the solid phase by 

means of eqn. (33), by using the 

corrected velocity field. 

To take into account the effects of turbulence, we 

use a Smagorinsky sub grid model. Further details 

on the numerical model can be found in [17]. 

 

 

3 Results and discussion 
The proposed numerical model has been validated 

against the experimental analysis conducted by 

Hosseini et al. [21]. 

The test case geometry consists in a rectangular 

channel with length 12 𝑚, height 1.5 𝑚 and width 

0.75 𝑚. The bottom as a constant slope in the 

channel length direction. At a channel boundary, 

inflow conditions are imposed. Three different 

simulations where reproduced. The inflow 

conditions and the data of the simulations are 

reported in table 1.  

 

Table. 1. Experimental tests conducted by Hosseini 

et al. [21]. Validation tests parameters. 

Test A B C 

Solid particle specific gravity �̆�𝑆 𝜌⁄  2.65 2.65 2.65 

Solid particle diameter 𝑑 [𝑚𝑚] 0.02 0.02 0.02 

Bottom slope 3% 2% 2% 

Inflow concentration [𝐾𝑔 𝑑𝑚3⁄ ] 0.010 0.005 0.010 

Liquid flow rate [𝑙 𝑚𝑖𝑛⁄ ] 3 15 10 

Inflow velocity [𝑚 𝑠⁄ ] 0.053 0.25 0.167 

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2020.15.1 

Giovanni Cannata, Luca Barsi, Marco Tamburrino

E-ISSN: 2224-347X 8 Volume 15, 2020



 

 
Fig. 2. Numerical simulation by means of the proposed model of the turbidity current of test A (own 

calculations). a) vertical section of the velocity and concentration fields obtained by means of the proposed 

simulation model; b) detail of the velocity and concentration fields.  

 

 

 
Fig. 3. Comparison between numerical simulation 

by the proposed model (own calculation, solid line) 

and experimental results by Hosseini et al. [21] 

(dashed line) in test A: a) dimensionless velocity 

profiles; b) dimensionless concentration profiles.  

 

Fig. 2 shows the velocity and concentration 

fields for the simulation A, at time 𝑡 = 270 𝑠 from 

the start of the release of fresh water and solid 

material. 

Fig. 3 shows the comparison between numerical 

results and experimental data produced by [21] for 

test A, in terms of mean non-dimensional 

downstream velocity values (Fig. 3a) and of non-

dimensional mean concentration profile (Fig. 3b). 

The mean non-dimensional velocity is the ratio 

between the mean velocity and the velocity 

maximum 𝑈𝑚; the non-dimensional length scale is 

the ratio between the thickness of the current 𝐻 and 

the height of the velocity maximum, 𝐻𝑚; the mean 

non-dimensional concentration is the ratio between 

the mean concentration and the by the mean 

concentration at the height of the velocity 

maximum, 𝐶𝑚 (see [21]). Analogously, in Fig. 4 and 

Fig. 5, the comparison between numerical results 

and experimental data for test B and test C, 

respectively, is shown. Figs. 3a, 4a and 5a show that 

the velocity profiles simulated by the proposed 

model fit well with the experimental data; the 

simulated non-dimensional velocity peak values are 

in very good accordance with the experimental data. 

With high non-dimensional length, the proposed 

model underestimates the non-dimensional velocity 

in test A (Fig. 3a), while slightly overestimates it in 

test B (Fig. 4a) and C (Fig. 5a). Figs. 3b, 4b and 5b 

show that there is a good accordance between the 

concentration profiles simulated by the proposed 

model and the profiles that results from the 

experimental data. The proposed model slightly 

overestimates the non-dimensional mean 

concentration for high non-dimensional lengths, 

with respect to the experimental results. 
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Fig. 4. Comparison between numerical simulation 

by the proposed model (own calculation, solid line) 

and experimental results by Hosseini et al. [21] 

(dashed line) in test B: a) dimensionless velocity 

profiles; b) dimensionless concentration profiles.  

 

 

 
Fig. 5. Comparison between numerical simulation 

by the proposed model (own calculation, solid line) 

and experimental results by Hosseini et al. [21] 

(dashed line) in test C: a) dimensionless velocity 

profiles; b) dimensionless concentration profiles.  

 

The proposed numerical model is applied to the 

case study of the Pieve di Cadore reservoir (Italy). 

The study is carried out in full reservoir conditions 

and in liquid and solid inflow discharge conditions 

associated with flood events with a return period of 

less than 10 years. The dam bottom outlet is 

assumed to be open, such as to ensure the complete 

release of the flood through the bottom outlet. The 

aim of this case study is to verify the conditions of 

formation of a turbidity current and its features. This 

is of a great practical importance, in order to verify 

in what conditions is useful to use the bottom outlet 

of a dam to control the silting processes in the 

reservoir. 

Test D consists in the simulation of a flood event 

with a return period equal to 2 years. The conditions 

of the test are: solid particle specific gravity �̆�𝑆 𝜌⁄ =
2.65; particle diameter 𝑑 = 0.1 𝑚𝑚; inflow average 

concentration of suspended solid 𝐶 = 5 𝑔 𝑙⁄ ; flood 

peak value of the tributary 𝑄 = 100 𝑚3 𝑠⁄ . Fig. 6 

shows the velocity and concentration fields in the 

Pieve di Cadore reservoir for test D. It can be seen 

that with such conditions, a turbidity current arises. 

Due to a high bottom slope of the reservoir, the 

turbidity current reaches the bottom outlet 

approximately at 𝑡 = 110 𝑚𝑖𝑛 from the beginning of 

the flood. 

 

C

 

 

 
Fig. 6. Test D. Simulation carried out by the 

proposed model (own calculation). Vertical section 

of the velocity and concentration fields. a) 𝑡 =
110 𝑚𝑖𝑛 from the beginning of the flood; b)  𝑡 =
95 𝑚𝑖𝑛 from the beginning of the flood; c) 𝑡 =
95 𝑚𝑖𝑛 from the beginning of the flood, detail. 

 

Test E consists in the simulation of a flood event 

with a return period of less than 10 years (the inflow 

average concentration of suspended solid and the 
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peak value of the tributary for a return period of 10 

years are, respectively, 𝐶 = 20 𝑔 𝑙⁄  and 𝑄 =
250 𝑚3 𝑠⁄ ). The conditions of the test are: solid 

particle specific gravity �̆�𝑆 𝜌⁄ = 2.65; particle 

diameter 𝑑 = 0.1 𝑚𝑚; inflow average concentration 

of suspended solid 𝐶 = 15 𝑔 𝑙⁄ ; flood peak value of 

the tributary 𝑄 = 200 𝑚3 𝑠⁄ . Fig. 6 shows the 

velocity and concentration fields in the Pieve di 

Cadore reservoir for test E. As for test D, it can be 

noted from Fig. 7 that under conditions of test E, a 

turbidity current is generated and it is able to reach 

the bottom outlet approximately at 𝑡 = 90 𝑚𝑖𝑛 from 

the beginning of the flood. 

In test F, the same flood event described for test 

E, is reproduced, with the only change in the 

particle diameter, which is set to 𝑑 = 0.3 𝑚𝑚. In 

Fig. 8, the velocity and concentration field are 

shown for test F. From the comparison between Fig. 

7 and Fig. 8 it can be seen that the turbidity current 

is generated even with a coarser solid material, even 

if the height of the current substantially decreases 

with the increase of the particle diameter. 

 

 

 
Fig. 7. Test E. Simulation carried out by the 

proposed model (own calculation). Vertical section 

of the velocity and concentration fields. a)  𝑡 =
90 𝑚𝑖𝑛 from the beginning of the flood; b) 𝑡 =
70 𝑚𝑖𝑛 from the beginning of the flood, detail. 

 

 

 
Fig. 8. Test F. Simulation carried out by the 

proposed model (own calculation). Vertical section 

of the velocity and concentration fields. a)  𝑡 =
95 𝑚𝑖𝑛 from the beginning of the flood; b) 𝑡 =
80 𝑚𝑖𝑛 from the beginning of the flood, detail. 

 

 

4 Conclusion 
In this work, we proposed a numerical model for 

turbidity currents, based on two-phase flow motion 

equations. In particular, we proposed three different 

formalizations of the two-phase flow motion 

equations. The most general formalization presented 

is valid for high concentration values. A more 

simplified formalization introduces the hypothesis 

of diluted concentrations. The last formalization 

presented adopts the linearization hypothesis, i.e. 

assumes that the particles are in translational 

equilibrium with the fluid flow. The two-phase flow 

motion equations are presented in an integral form 

in time-dependent curvilinear coordinates. The 

vertical coordinate varies in time in order to follow 

the free surface movements. The proposed 

numerical model has been compared with several 

experimental validation tests. Furthermore, the 

numerical model has been used to reproduce the 

case study of Pieve di Cadore reservoir, under 

several inflow conditions; the possibility of the 

formation a turbidity current during several different 

flood events, has been investigated. 
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